Wednesday, June 1, 2011

Machine Learning Demos

这是Basilio Noris博士的杰作,主要针对现有的机器学习的分类、距离、回归等算法的现有source code并不是很好使用以及理解,实现了一个交互式的GUI,把一些库和例子结合起来,对这些算法进行了更好的可视化和比较,该GUI支持Windows,Linux,以及Mac。用户可以根据自己的机器选择安装进行体验。详细的使用和介绍参考这里Machine Learning Demos

界面如下:



实现的方法如下:



















ClassificationRegressionDynamical SystemsClusteringProjections
Support Vector Machine (SVM) (C, nu, Pegasos)
Relevance Vector Machine (RVM)
Gaussian Mixture Models (GMM)
Multi-Layer Perceptron + BackPropagation
Gentle AdaBoost + Naive Bayes
Approximate K-Nearest Neighbors (KNN)
Support Vector Regression (SVR)
Relevance Vector Regression (RVR)
Gaussian Mixture Regression (GMR)
MLP + BackProp
Approximate KNN
Sparse Optimized Gaussian Processes (SOGP)
Locally Weighed Projection Regression (LWPR)
GMM+GMR
LWPR
SVR
SEDS
SOGP (Slow!)
MLP
KNN
K-Means
Soft K-Means
Kernel K-Means
GMM
One Class SVM
Principal Component Analysis (PCA)
Kernel PCA
Independent Component Analysis (ICA)
Linear Discriminant Analysis (LDA)
Fisher Linear Discriminant
EigenFaces to 2D (using PCA)

2 comments: