界面如下:
实现的方法如下:
Classification | Regression | Dynamical Systems | Clustering | Projections |
---|---|---|---|---|
Support Vector Machine (SVM) (C, nu, Pegasos) Relevance Vector Machine (RVM) Gaussian Mixture Models (GMM) Multi-Layer Perceptron + BackPropagation Gentle AdaBoost + Naive Bayes Approximate K-Nearest Neighbors (KNN) | Support Vector Regression (SVR) Relevance Vector Regression (RVR) Gaussian Mixture Regression (GMR) MLP + BackProp Approximate KNN Sparse Optimized Gaussian Processes (SOGP) Locally Weighed Projection Regression (LWPR) | GMM+GMR LWPR SVR SEDS SOGP (Slow!) MLP KNN | K-Means Soft K-Means Kernel K-Means GMM One Class SVM | Principal Component Analysis (PCA) Kernel PCA Independent Component Analysis (ICA) Linear Discriminant Analysis (LDA) Fisher Linear Discriminant EigenFaces to 2D (using PCA) |
2 comments: